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Abstract— In this paper, disturbance observer based model
predictive control of linear systems which satisfies a matching
condition is proposed, where the disturbance is bounded and
varying slowly. A conventional nominal model predictive control
problem with tightened constraints is solved online which
predicts the nominal trajectory. Two ancillary control laws
are determined off-line: one drives the trajectories of the real
system to the trajectories of the nominal system, the other
tries to cancel out the effect of the disturbance input. Both
recursive feasibility of the involved optimization problem and
robust stability of systems under control are guaranteed if
the optimization problem is feasible at the initial time instant.
The resultant online algorithm has similar complexity to that
required in conventional model predictive control.

I. INTRODUCTION

Model predictive control (MPC) is one of the most ef-
fective techniques available for the control of constrained
systems. At each time instant, an optimization problem is
solved with the measurement of the system state, and a
control sequence is obtained accordingly so as to predict
the systems dynamics in a time horizon. However, only is
the first segment of the sequence applied to the system. At
the next time instant, the whole procedure is repeated with
the updated measurement of the system state [1, 2].

While dealing with constrained systems with uncertainties,
an MPC algorithm is required to ensure the satisfaction
of all constraints at all times as well as to guarantee the
desired performance. It is natural to consider the worst-case
or min-max approach, in which a worst-case performance
is minimized online to obtain an optimal control action,
suppose that there is no other information of uncertainties
except for their bound [3–5]. In general, min-max MPC is
very conservative since the worst-case scenario has to be
considered at each time instant. On one hand, the worst-
case scenario may be not happen at all. On the other hand,
the computational burden is very heavy. A great deal of
effort is devoted to reduce the computational burden and the
conservativeness of the min-max MPC. For linear systems
with parameter perturbations or parameter uncertainties, min-
max cost function is replaced by its upper bound in [6–9],
where a cost function which is upper bound of the min-max
cost function is minimized, and a linear feedback control
law instead of a sequence of control action is adopted in
order to predict the dynamics of the systems. The involved
optimization problem solved online can be reduced to a semi-
definite programming problem. The idea is easily extended
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to linear parameter varying (LPV) systems [10, 11]. For
systems with exogenous disturbances, tube MPC or MPC
with tightened constraints are introduced in [12–15], where
the control action consists of a nominal control action and a
control law. The control action which is obtained by solving
online a nominal optimization problem drives the systems
dynamics of the nominal systems to the equilibrium. The
control law which is obtained offline drives the actual system
dynamics to the nominal system dynamics. Tube MPC has
almost the same computational burden compared with the
nominal MPC, but it only fits for restricted class systems
such as linear systems [12, 13] or Lipschitz nonlinear systems
[14, 15]. Furthermore, it cannot achieve satisfying effects in
controlling systems in the presence of strong disturbances.

Disturbance observer based control can handle the distur-
bances directly in the process of controller design, rather
than asymptotically suppress disturbances through feedback
regulation [16–18]. Compound control schemes combining
a feedforward compensation part based on disturbance ob-
server and a feedback regulation part based on MPC are
addressed to improve disturbance rejection performance of
the systems under control [19, 20], where control of both ball
mill grinding circuits and dead-time processes is considered,
respectively. Robust MPC with a disturbance observer for
three-phase voltage source PWM rectifier is presented in
[21]. The proposed method has an inherent rapid dynamic
response as a result of the conventional MPC. Offset-free
MPC is proposed in [22] where the objective of offset-
free is achieved by synthesizing an observer for the nom-
inal systems. Robust MPC for multivariate ill-conditioned
systems is addressed in [23], which shows that the optimal
disturbance model is close to the input disturbance model.
An explicit nonlinear MPC and disturbance observer based
control for trajectory tracking of autonomous helicopters
is introduced in [24], which provides an effective way of
integrating disturbance information.

In this paper, robust MPC of linear systems satisfying a
matching condition is considered, where the disturbances are
varying slowly and the bound of disturbances could be large.
A linear disturbance observer is designed offline to eliminate
or cancel off the influence of disturbances. The same as
tube MPC, only is a nominal optimization problem solved
online. Thus, the proposed scheme has a mild computational
burden in general. Both the recursive feasibility of the
optimization problem and the ultimate bound of the systems
under control are guaranteed suppose that the optimization
problem is feasible at the initial time instant. While either the
disturbances or derivative of the disturbances are decaying,
the system dynamics will approach to the equilibrium.
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This paper is organized as follows: In Section II problem
setup, basic facts on the adopted disturbance observer and
set operation are introduced. The proposed scheme, robust
model predictive control based on disturbance observer, is
reported in Section III. The properties, both recursive fea-
sibility and ultimate boundedness, are discussed in Section
IV. A numerical example is shown in Section V. The paper
is concluded with a short summary.

II. PROBLEM SETUP AND PRELIMINARY

Consider linear time-invariant systems

ẋ = Ax+Bu+Bww, (1)

where x ∈ Rnx is the system state, u ∈ Rnu the control
input. The term w ∈ Rnw refers to exogenous disturbance
or mismatch between systems and their models. Suppose that
x(t) can be measured in real time.

The system is subject to state and input constraints

x(t) ∈ X, u(t) ∈ U, ∀t > 0, (2)

where U ⊆ R
nu is compact, X ⊆ R

nx is connected and
(0, 0) is contained in the interior of X× U.

In order to guarantee stability of closed-loop systems, the
following assumptions are made:

Assumption 1: The disturbance w(t) ∈ W is bounded,
where W is a bounded set and 0 ∈ W. Furthermore, ẇ(t) is
piecewise continuous and ‖ẇ(t)‖ ≤ β for all t ≥ 0, where
β is constant.

Assumption 2: (A,B) is stabilizable.
Assumption 3:

R(Bw) ⊆ R(B)

where R(M) denotes the range (column) space of M .
The condition R(Bw) ⊆ R(B) is the so-called matching
condition which implies that rank

[
B
]
= rank

[
B Bw

]
.

Assumption 2 together with Assumption 3 describes the
structure properties of the considered systems.

The following disturbance observer [16, 17] is designed to
estimate the disturbance w

{

ṗ = −LBw(p+ Lx)− L(Ax+Bu),

ŵ = p+ Lx,
(3)

where ŵ is an estimate of the disturbance, p is an auxiliary
variable, and L is the disturbance observer gain to be
designed.

Define a nominal system

˙̄x := Ax̄+Bū, (4)

i.e., w(t) ≡ 0, x̄(t) ∈ X and ū(t) ∈ U for all t ≥ 0.
A composite linear control law which takes full advantage

of the information of the system state x and the estimate of
the disturbance w is proposed

u = ū+K(x− x̄) +Kwŵ (5)

where K is a state feedback control gain, Kw is the distur-
bance compensation gain. The aim of designing Kw is to

eliminate or reduce the influence of the disturbances on the
system.

Denote z(t) := x(t)−x̄(t) as the error (deviation) between
the actual system (1) and the nominal system (4). The
dynamics of the error system is given as

ż = Az +Bũ+Bww (6a)

ũ = Kz +Kwŵ (6b)

The main objective of this paper is to find a control action
ū(t), disturbance observer gain L, and control feedback
laws Kz and Kwŵ for constrained linear systems with
respect to disturbances, such that the systems under control
is asymptotically ultimately bounded, and constraints (2) are
satisfied for all t ≥ 0 as well.

A. Properties of disturbance observers

The disturbance estimation error of the disturbance ob-
server (3) is defined as

e = ŵ − w.

Combining system (1) and disturbance observer (3), the
dynamics of the disturbance estimation error is

ė = −LBwe− ẇ. (7)

The ultimate bounded property of the disturbance observer
is concluded by the following lemma.

Lemma 1: [18] Suppose that Assumption 1 and Assump-
tion 2 are satisfied for system (1). Then, there exist M ≥ 1
and γ < 0 such that the disturbance estimate ŵ(t) yielded
by the disturbance observer (3) will asymptotically track the
disturbances w(t) with the ultimate bound error −βM

γ
if the

observer gain L is chosen such that −LBw is Hurwitz.
Note that the disturbance estimates ŵ yielded by the distur-
bance observer (3) will asymptotically track the disturbance
w offset if the observer gain matrix L is chosen such that
−LBw is Hurwitz and lim

t→∞

ẇ(t) = 0.
Combining system (1), the composite control law (5) and

the dynamics of the disturbance estimation error (7), the
closed-loop error system is
[
ż

ė

]

=

[
A+BK BKw

0 −LBw

][
z

e

]

+

[
BKw +Bw 0

0 −1

][
w

ẇ

]

(8)
In terms of Assumption 3, there exists a Kw such that

BKw +Bw = 0.
Lemma 2: [18] Suppose that Assumption 1-3 are satisfied

for system (6). If K , L and Kw are chosen such that

(1) both −LBw and A+BK are Hurwitz,
(2) BKw +Bw = 0.

Then,

(a) system (6) under the feedback control law Kz+Kwŵ

is input-to-state stable (ISS) from ẇ to state z,
(b) system state z(t) is bounded which is proportional to

‖ẇ(t)‖∞.
Note that lim

t→∞

z(t) = 0, i.e., the effect of the disturbance is

eliminated as t goes to infinity, if lim
t→∞

ẇ(t) = 0.
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B. Set operations

Before proceeding the main results of the paper it is
necessary to introduce some set operations [25].

Definition 1: Consider two sets A, B ⊂ R
n, then the

Pontryagin difference set is defined as

A⊖ B =
{
x ∈ R

n| x+ y ∈ A, ∀y ∈ B
}
,

Similarly, the addition set is defined as

A⊕ B =
{
x+ y|x ∈ A, x ∈ B,

}
.

Definition 2: The multiplication of a set B by a matrix A

denotes a mapping of all its elements

AB =
{
c| ∃b ∈ B, c = Ab

}
,

III. ROBUST MODEL PREDICTIVE CONTROL

In this section robust model predictive control of linear
systems with disturbances is proposed. The controller has
two components in which a nominal controller generates a
nominal state trajectory, the ancillary control laws K and
Kw aims at steering the trajectories of the perturbed system
(6) to the nominal one, and cancelling out the effect of
disturbances, respectively.

A. Nominal control input

The optimization problem solved online is subject to the
nominal dynamics (4), i.e. no disturbances are presented.
Furthermore, tightened constraints rather than the original
constraints are introduced in order to guarantee the satisfac-
tion of the input constraints and state constraints.

For the system state x(tk), the optimization problem
solved online is formulated as follows:

Problem 1:

minimize
ū(·,x̄(tk))

J (x̄(tk), ū(·, x̄(tk))) (9a)

subject to
˙̄x(t) = Ax̄(t) +Bū(t), (9b)

x̄(tk + τ ; x̄(tk)) ∈ X0, τ ∈ [tk, tk + Tp], (9c)

ū(tk + τ ; x̄(tk)) ∈ U0, τ ∈ [tk, tk + Tp], (9d)

x̄(tk + Tp; x̄(tk)) ∈ Xf , (9e)

where X0 := X⊖Ω, U0 := U⊖(KΩ⊕KwW), Xf ⊆ X⊖Ω.
The set Ω is the ultimate bound of the error z which will be
introduced in detail later.
The objective function is

J(x̄(tk), ū(·)) :=E(x̄(tk + Tp; x̄(tk)))+
∫ tk+Tp

tk

x̄T (τ ; x̄(tk))Qx̄(τ ; x̄(tk))+

ūT (τ ; x̄(tk))Rū(τ ; x̄(tk))dτ,

where Tp is the prediction horizon, Q ∈ R
n×n and R ∈

R
m×n are positive definite weighting matrices. The term

ū(·, x̄(tk)) denotes the optimal solution to Problem1, and
x̄∗(·; x̄∗(tk)) is the predicted trajectory of the nominal sys-
tem (4) starting from the state x̄∗(tk) at time tk and driven
by the optimal control input ū∗(·; x̄∗(tk)).

Denote δ as the sampling instant, i.e., the optimization
problem is solved at each kδ with k ∈ [1, 2, 3, · · · ). The
control input of the nominal system (4) during the sampling
interval [tk, tk + δ) is

ū(τ) = ū∗(τ ; x̄∗(tk)). (10)

The terminal set Xf is a neighborhood of the origin which is
a sub-level set of a positive definite function E(·). Moreover,
Xf and E(x) satisfy the following conditions [2, 26]:

B0) Xf ⊆ X0,
B1) ū ∈ U0, for all x̄ ∈ Xf ,
B2) For all x̄ ∈ Xf , E(x̄) satisfies

∂E(x̄)

∂x̄
(Ax̄ +Bū) + x̄TQx̄+ ūTRū ≤ 0. (11)

Since (A,B) is staiblizable, there exists a locally asymptot-
ically stabilizing control law ū := Kx̄, a terminal region
Xf := {x̄ ∈ Rnx×nx | x̄TP x̄ ≤ α} with P positive
definite and α > 0, a positive definite function E(x̄) :=
x̄TP x̄ that satisfy (11) for all x̄ ∈ Xf [2]. Since (11)
holds, Xf is invariant for the nominal system (4) controlled
by ū = Kx̄. Model predictive control based on repeated
solution of Problem 1 stabilizes the nominal system if the
terminal conditions B0-B2 are satisfied [1, 2]. Furthermore,
the optimal value function J∗ satisfies:

J(x̄∗(t+ δ; x̄(t))) − J∗(x̄(t)) ≤
∫ t+δ

t

x̄∗(τ)TQx̄∗(τ)− ū∗(τ)TRū∗(τ)dτ.

B. Ultimate boundedness

Definition 3: A system is asymptotically ultimately
bounded if the system converges asymptotically to a bounded
set.

In terms of BKw +Bw = 0, Eq.(8) is rewritten as
[
ż

ė

]

=

[
A+BK BKw

0 −LBw

]

︸ ︷︷ ︸

Ã

[
z

e

]

+

[
0
−1

]

︸ ︷︷ ︸

B̃

ẇ (12a)

z =
[
1 0

]

︸ ︷︷ ︸

C̃

[
z

e

]

+
[
0
]

︸︷︷︸

D̃

ẇ. (12b)

The following result shows that there exists an ultimate
bound for the augmented system (12).

Lemma 3: [27] Suppose that z(0) = 0, and there exists
R > 0, λ > 0, γ > 0 and µ > 0 such that

[
ÃTR+RÃ+ λR RB̃

B̃TR −µI

]

< 0, (13a)





λR 0 C̃T

0 (γ − µ)I D̃T

C̃ D̃ γI



 > 0, (13b)

then z(t)T z(t) ≤ γ2ẇ(t)T ẇ(t) for all t ≥ 0.
Theorem 1: Suppose that z(0) = 0, and there exist pos-

itive definite matrices X1 ∈ Rnx×nx and X2 ∈ Rnw×nw ,

930



non-square matrices Y1 ∈ Rnu×nx and Y2 ∈ Rnw×nx , and
scalars λ > 0, γ > 0 and µ > 0 such that





∏
BKw 0

KT
wB

T λX2 − Y2Bw −BT
wY

T
2 −X2

0 −X2 −µI



 < 0 (14a)

[
λX1 X1

X1 γI

]

> 0 (14b)

with
∏

:= X1A
T + AX1 + Y T

1 BT + BY1 + λX1. Then,
with K := Y1X

−1
1 and L := Y2X

−1
2 , the error system (12)

with the control law ũ = Kz +Kwŵ is ultimate bounded.
Proof: The proof is divided into three parts. First

Eq.(14a) and Eq.(14b) are satisfied for the system (12),
respectively. Then, based on Lemma 3, the upper bound of
the error system is obtained.

(1) Choosing R =

[
H1 0
0 X2

]

with H1 > 0, and taking

Ã =

[
A+BK BKw

0 −LBw

]

and B̃ =

[
0
−1

]

into account,

(13a) can be rewritten as




∏

1 H1BKw 0
KT

wB
TH1 λX2 −X2LBw −BT

wL
TX2 −X2

0 −X2 −µI



 < 0

(15)
with

∏

1 := (A+BK)TH1 +H1(A+BK) + λH1.
Denote Y2 = X2L and perform a congruence transforma-

tion with diag{H−1
1 , I, I}, we obtain that





∏

1 BKw 0
KT

wB
T λX2 − Y2Bw −BT

wY
T
2 −X2

0 −X2 −µI



 < 0

with
∏

1 := H−1
1 AT +H−1

1 KTBT +AH−1
1 +BKH−1

1 +
λH−1

1 .
Furthermore, denote X1 := H−1

1 and Y1 := KX1, the
above equation is equivalent to (14a).

(2) Taking D̃ =

[
0
0

]

and C̃ =
[
1 0

]
into account, (13b)

can be rewritten as




λH1 0 I

0 X2 0
I 0 γI



 > 0.

In terms of X2 > 0, the above equation is simplified as
[
λH1 I

I γI

]

> 0. (16)

Performing a congruence transformation with diag{H−1
1 , I},

(14b) is obtained.
(3) Due to Lemma 3, the upper bound of z(t) for all t ≥ 0

is obtained, i.e., ‖z‖∞ ≤ γβ.
Remark 3.1: Since

∏
:= X1A

T +AX1+Y T
1 BT +BY1+

λX1 > 0, the system ż(t) = Az(t) + Bu(t) with u =
Y1X

−1
1 z is exponentially stable. Thus, the initial state z(0) of

the systems (12) has little influence on the system dynamics.
Remark 3.2: Lemma 2 shows that z(t) is bounded for all

t ≥ 0, and Theorem 2 estimates the upper bound of z(t).
Algorithm 1: (Offline)

(1) Choose Kw such that BKw +Bw = 0.
(2) Obtain L and K by solving the matrix inequalities (14a)

and (14b).
Then, the upper bound of the error system is

Ω := {z ∈ Rnx | ‖z‖∞ ≤ γβ}

The following online algorithm is implemented in this
paper after (Kw,K, L) is chosen offline.

Algorithm 2: (Online)

Date: (Kw,K, L)
Initialization: x(t0), w(t0) and p(t0)
Step 0: At time t0, set x̄(t0) = x(t0) where x(t0) is
the current state.
Step 1: At time tk, solve Problem 1 with the current
state x̄(tk) to obtain the nominal control action ū(tk),
compute the successor state p(tk+1) and ŵ(tk+1) of the
disturbance observer (3), and the actual control action
u(tk) = ū(tk) +K(x(tk)− x̄(tk)) +Kwŵ.
Step 2: Apply the control u(tk) to the system (1) during
the sampling interval [tk, tk+1], where tk+1 = tk + δ.
Step 3: Measure the state x(tk+1) at the next time
instant tk+1 of the system (1), compute the successor
state x̄(tk+1) of the nominal system (4) under the
nominal control ū(tk).
Step 4: Set (x̄(tk), x(tk)) = (x̄(tk+1), x(tk+1)) and
(p(tk), ŵ(tk)) = (p(tk+1), ŵ(tk+1), ), tk = tk+1, and
go to Step 1.

IV. PROPERTIES OF THE PROPOSED SCHEME

The proposed scheme has the same online computational
burden as the conventional MPC with guaranteed nominal
stability [1, 2] since only the nominal model is used to predict
the system dynamics.

The properties of the systems with the proposed scheme
are stated in the following theorem.

Theorem 2: Suppose that Problem 1 is feasible at the
initial time t0. Then,

(i) Problem 1 is feasible for all t > t0,
(ii) the system state x(t) converges to Ω, i.e., the system

under control is ultimately bounded.
Proof: (1) Only the nominal state and the nominal

system dynamics are used while Problem 1 is solved at each
time instant, the solution of the optimization problem does
not depend on the external disturbances at all. Therefore,
recursive feasibility is guaranteed suppose that Problem 1 is
feasible at the initial time instant [2].

(2) Since the nominal system (4) with model predictive
control is asymptotic stable [1, 2], there exists a class KL
function β(x̄, t) [28] such that

‖x̄(t)‖ ≤ β(x̄(t0), t), ∀t ≥ t0.

In terms of Theorem 1, z(t) ≤ γβ for all t ≥ t0. Thus,

‖x(t)‖ ≤ β(x̄(t0), t) + γβ, ∀t ≥ t0,

since x(t) = x̄(t) + z(t) for all t ≥ t0.
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For a given ε > 0, there exists tε such that for all t ≥ tε

‖x̄(t)− 0‖ = ‖x̄(t)‖ ≤ β(x̄(t0), t) ≤ ε,

i.e., limt→∞ x̄(t) = limt→∞

[
x(t) − z(t)

]
= 0.

Thus,
lim
t→∞

x(t) = lim
t→∞

z(t) = γβ.

V. ILLUSTRATIVE EXAMPLES

The system is

ẋ = Ax+Bu +Bww (17)

with A =

[
−1 2
−3 1

]

, B =

[
0.5 −2
−5 0.5

]

, Bw =

[
0.5
0

]

, where

the matrix A has two eigenvalues +2.2361i and −2.2361i,
and the matching condition R(Bw) ⊆ R(B) is satisfied.
Assume that x1(t) and x2(t) can be measured, and the
control constraint is

−2 ≤ ui(t) ≤ 2, ∀t ≥ 0, i = 1, 2.

For all t ≥ 0, the disturbance satisfies that w(t) ∈ W with

W :=
{
w ∈ R1 | |w| ≤ 0.5, |ẇ| ≤ 0.05

}
.

The nominal system

˙̄x = Ax̄+Bū

is controllable. The weighting matrices of Problem 1 are
chosen as

Q =

[
1 0
0 1

]

, R =

[
1 0
0 1

]

.

Choose Kw =

[
−0.0256
−0.2564

]

such that BKw + Bw = 0. Fix

λ = 1, and solve matrix inequalities (14a) and (14a) to obtain

γ = 3.2466, K =

[
0.5609 0.2641
0.2641 −1.7702

]

and L =

[
2.8672
0.0000

]

.

Denote K1 and K2 as the first and second row of the linear
control gain K , i.e., K1 =

[
0.5609 0.2641

]
and K2 =

[
0.2641 −1.7702

]
. In terms of ‖z‖∞ ≤ γβ = 0.1623,

‖K1z‖∞ ≤ 0.1339, and ‖K2z‖∞ ≤ 0.3302. Suppose that
‖ŵ(t)‖ ≤ 0.5 for all t ≥ 0, i.e., an output saturation function
is added for the designed disturbance observer (3). Denote
Kw1 and Kw2 as the first and second row of the linear control
gain Kw, i.e., Kw1 =

[
−0.0256

]
and Kw2 =

[
−0.2564

]
.

Thus, ‖Kw1ŵ‖∞ ≤ 0.0128, and ‖Kw2ŵ‖∞ ≤ 0.1282.
Therefore, the control input of Problem 1 is

− 1.85 ≤ u1(t) ≤ 1.85,

− 1.50 ≤ u2(t) ≤ 1.50,

for all t ≥ 0.
Both the terminal control law and the terminal penalty

matrices are computed by the solution of a convex optimiza-
tion problem, see [29], the terminal set Xf = {x̄ ∈ R

2 |

E(x̄) ≤ 10} with E(x̄) = x̄T

[
0.4103 −0.0641
−0.0641 0.4180

]

x̄ and

the terminal control law π(x̄) =

[
−0.0439 0.4083
0.3973 −0.0207

]

x̄.

Problem 1 is solved in discrete time with a sampling time
of δ = 0.02 time units and a prediction horizon of Tp =
0.2 time units. Figure 1 shows the state trajectory of the
considered system starting at x0 = [−2.5−2.5]T with respect
to the disturbance

w(t) =

{
0 t ∈ [0, 4),

0.5(1− e−0.01(t−4)) t ∈ [4,+∞).

The inputs injected to the real system satisfy the constraint
although the potential of the inputs is not taken full advantage
of. The estimated disturbance can converge to the actual
disturbance in finite time. The system state converges to
the equilibrium even if the non-zero disturbances exist as
limt→∞ ẇ(t) = 0.

VI. CONCLUSIONS

In this paper, a robust model predictive control scheme of
linear systems was proposed, where the considered distur-
bances are varying slowly and the systems satisfy a match-
ing condition. A nominal optimization problem was solved
online to predict the dynamics of the nominal systems, and
disturbance observer was designed in order to eliminate the
influence of the disturbances. A linear control law drives the
system dynamics of the real system to the system dynamics
of the nominal systems. Both the recursive feasibility of the
involved optimization problem and the asymptotic stability of
the systems under control are guaranteed if the optimization
problem has a feasible solution at the initial time instant. The
proposed scheme has the same computational burden as the
conventional model predictive control. The effectiveness of
the proposed scheme is verified by a simulation example.
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to nonlinear robust receding horizon control of constrained systems,”
in Proc. Amer. Contr. Conf., Albuquerque, New Mexico, 1997, pp.
3073–3077.

[5] D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. Camacho,
“Min-max model predictive control of nonlinear systems: a unifying
overivew on stability,” European Journal of Control, vol. 15, no. 1,
pp. 5–21, 2009.

[6] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[7] F. Cuzzola, J. C. Geromel, and M. Morari, “An improved approach
for constrained robust model predictive control,” Automatica, vol. 38,
no. 7, pp. 1183–1189, 2002.

932



x1

x
2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

u
1

0 4 8 12 16 20
−2

−1

0

1

t

u
2

0 4 8 12 16 20
−0.8

−0.6

−0.4

−0.2

0

0.1

w

t

0 4 8 12 16 20
−0.1

0

0.2

0.4

0.6

Fig. 1. Exemplary time profiles for the closed-loop system (17) for disturbances w from x0 = [−2.5 − 2.5]T . For the figure of disturbance w, the solid
line: estimated disturbances, dashed line: actual disturbances

[8] B. C. Ding, Y. G. Xi, and S. Y. Li, “A synthesis approach of online
constrained robust model predictive control,” Automatica, vol. 40,
no. 1, pp. 163–167, 2004.

[9] H. Chen and C. W. Scherer, “Moving horizon H∞ control with
performance adaptation for constrained linear systems,” Automatica,
vol. 42, no. 6, pp. 1033–1040, 2006.

[10] S. Yu, C. Bohm, H. Chen, and F. Allgöwer, “Model predictive control
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